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Carotenoids in Photosynthesis: An Historical Perspective

Chapter 1

Summary

This chapter presents a personal historical perspective of the role of carotenoids in photosynthesis. It leads
the reader into the early literature on the carotenoids and photosynthesis that are related to the discoveries on
the excitation energy transfer and, to a lesser extent, on photoprotection. Excitation energy transfer from the
carotenoid fucoxanthin to chlorophyll (Chl) a was shown first in the diatoms by H. Dutton, W. M. Manning and
B. M. Duggar, in 1943, at the University of Wisconsin at Madison. After the extensive researches of E. C.
Wassink (in the Netherlands) on this topic, the classical doctoral thesis of L. N. M. Duysens became available
in 1952, at the State University in Utrecht. This thesis dealt with the evidence of excitation energy transfer in
many photosynthetic systems, including anoxygenic photosynthetic bacteria. The experiments of R. Emerson
and C. M. Lewis, done at the Carnegie Institute of Washington, Stanford, California, in the 1940s, dealt with the
quantum yield action spectra of photosynthesis. In these experiments, the famous red drop phenomenon was
discovered; further, the authors showed here the low efficiency of carotenoids in the photosynthesis of both
green algae and blue-green algae (cyanobacteria). In 1956, R. Stanier and his coworkers discovered, at the
University of California at Berkeley, a special role of carotenoids in protection against death in phototrophic
bacteria. Finally, in 1962, H. Yamamoto (of Hawaii) pioneered the role of xanthophyll cycle pigments in
photoprotection. This was followed by key experiments and concepts from B. Demmig-Adams (1987, now in
Colorado), and O. Björkman (at Stanford, California), among others mentioned in the text. In 1954, a 515 nm
absorbance change was discovered by Duysens (1954) and has now become a quantitative measure of the
membrane potential changes in photosynthesis. Historical aspects of some of the basic principles of light
absorption and excitation energy transfer, and references to selected current literature are also included in this
chapter to allow the reader to link the past with the present.

H. A. Frank, A. J. Young, G. Britton and R. J. Cogdell (eds): The Photochemistry of Carotenoids, pp. 1–19.
© 1999 Kluwer Academic Publishers. Printed in The Netherlands.
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I. Introduction

The intent in this chapter is to present a historical
perspective of the two major functions of carotenoids
in photosynthesis, namely, light harvesting and
photoprotection, with emphasis on the former. As a
novice in both the history of photosynthesis and in
the study of the role of carotenoids, I am unencum-
bered by any bias except that of personal and close
associations with (1) Robert Emerson, who, with
Charleton M. Lewis, measured the first most precise
action spectra of photosynthesis (that included the
carotenoid region) in the cyanobacterium Chroo-
coccus (Emerson and Lewis, 1942) and the green
alga Chlorella (Emerson and Lewis, 1943), and
discovered the enhancing effect of light absorbed by
the carotenoid fucoxanthin on the quantum yield of
photosynthesis sensitized by Chl a of what we now
call Photosystem I (PS I) in the diatom Navicula
minima (Emerson and Rabinowitch, 1960; Govindjee
and Rabinowitch, 1960; Rabinowitch, 1961); and (2)
with Eugene Rabinowitch, who wrote the most
detailed single-authored treatise, more than 2000
pages long, on all aspects of photosynthesis including
carotenoids, published in 1945 (Vol. I), 1951 (Vol. II,
part 1), and 1956 (Vol. II, part 2) (Bannister, 1972;
Brody, 1995). The personal perspective of Duysens
(1989) provides an account of the discovery of the
two light reactions of photosynthesis, necessary for
understanding the context of the present day view of
photosynthesis.

A. Why History?

Retracing historical developments and compre-
hending the overview of the history of the ideas are
essential in grasping the nature of scientific enquiry
in any field. From another perspective, I also believe
in what Pliny, the Younger (see a translation by Firth,
1909) implied in Book V, Letter V to Nonius Maximus
(pp. 224–225) that it is a noble employment to rescue
from oblivion those who deserve to be remembered.
In writing this chapter, I do not even know if this
would be achieved here. I shall attempt to present a
view that I consider worthy of thought by the readers
of a book that deals with the Photochemistry of
Carotenoids. I know that a great many scientists are
filled with a glow when they see others citing and

Abbreviations: BChl – bacteriochlorophyll; Chl – chlorophyll;
PS I – Photosystem I; PS II – Photosystem II

recognizing their work; they feel that what they did
was indeed useful to society.

B. Carotenoids: Carotenes and Xanthophylls

Everything connected with color has always held,
and will continue to hold, a captivating interest for
me. The brilliant yellow pigments known as carotenes
and xanthophylls are no exception. Carotene was
first isolated in 1831 by Heinrich Wilhelm Ferdinand
Wackenroder (1798–1854). Berzelius (1837a,b)
named the yellow pigments obtained from the autumn
leaves xanthophylls (xanthos being Greek for yellow,
and phyll for leaf) as a counterpart to chlorophyll,
Chl (leaf green). Fremy (1860) reviewed the
knowledge on carotenoids at that time. By 1902,
however, there were 800 publications in this field
(Kohl, 1902). One of the two major yellow pigments
present in leaves was found to be identical with the
carotene from the carrot root. Xanthophylls were
discovered in algae, and one leaf xanthophyll, lutein,
was found in egg yolk (for these and other early
accounts on the carotenoids, see Lubimenko, 1927
and Smith, 1930). Strain (1938) used the name
carotenes for the hydrocarbons, and xanthophylls for
oxygenated derivatives of carotenes, but Bogert
(1938) suggested that xanthophylls be called
carotenols because of their chemical structure and
because they were not restricted to leaves. In his
famous treatise on photosynthesis, Rabinowitch
(1945, 1951, 1956) adopted the term carotenols;
thus, lutein was luteol, violaxanthin was violaxanthol,
zeaxanthin was zeaxanthol, etc. We no longer use the
‘ol’ ending, which is too restrictive, and we are back
to the terminology used by Harold Strain.

The first separation and purification of the carotenes
and xanthophylls must be credited to the Russian
botanist Tswett (1906, 1911) who invented chroma-
tography for the separation of the leaf pigments i.e.
green Chls, and yellow-to-orange carotenes and
xanthophylls (also see discussion of paper chroma-
tography by Jensen and Liaaen-Jensen, 1959). Tswett
already provided the concept of a family of many
pigments, the carotenoids (carotenes and xantho-
phylls). (Figure 1 is taken from Strain (1938) and
shows the separation of some of the carotenoids on
two systems.) This was followed by the extensive
work on the separation and chemistry of the
carotenoids by R. Wilstätter (Nobel Prize in
Chemistry in 1915, mostly for work on Chl chemistry)
(see Wilstätter and Stoll, 1913) although his ideas on
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the functions of these pigments were not substantiated.
Following these early days, research on the
carotenoids was reviewed by Palmer (1922),
Zechmeister (1934, 1962), Lederer (1934), Karrer
and Jucker (1948, English translation, 1950),
Goodwin (1952, 1976), Cogdell (1978; 1985: for
interactions with Chls), Britton and Goodwin (1982),
Cogdell and Frank (1987), Mimuro and Katoh (1991),
Britton et al. (1995) and Bartley and Scolnik (1995).
Nobel prizes in Chemistry were successively awarded
to Paul Karrer (in 1937) and Richard Kühn (in 1938)
for their work on the structure and chemistry of the

carotenoids. A book edited by Isler (1971) was
dedicated to the memory of Paul Karrer. Kühn (1935)
showed that the carotenoids absorb in the visible (at
about 480 nm) due to the alternation of single and
double bonds, which produces a so-called Brillouin
gap when one resonance structure is dominant. It
was Karrer, however, who had recognized the
symmetrical nature of the various carotenoids
carotene; lycopene; zeaxanthin) and that vitamin A
was related to half of the                      molecule (Karrer,
1934; Karrer and Helfenstein, 1933). The nomen-
clature at that time was summarized by Palmer (1934).
By 1948 about 80 carotenoids were known, and
structures of about half of those were established; by
1950 total synthesis of was achieved by
Karrer and others. For chemistry of carotenes, see
McKinney (1935), Liaaen-Jensen (1978), and
Packer’s two volumes (1992a,b); for antheraxanthin,
see Karrer and Oswald (1935), for spirilloxanthin,
see van Niel and Smith (1935), for xanthophylls of
algae, see Strain et al. (1944), and for carotenoids in
cyanobacteria, see Hirschberg and Chamowitz
(1994). For rules on the nomenclature of carotenoids,
see IUPAC and IUB (1971, 1975).

C. Function: Light Harvesting and
Photoprotection

Karrer and Jucker (1948), when dealing with the
function of carotenoids, wrote, ‘All these investi-
gations are still at a preliminary stage and further
researches will be required in order to elucidate the
importance of carotenoids in plants.’ Similarly,
Goodwin (1952) stated, ‘With regard to formation
and function (of carotenoids), knowledge is
rudimentary.’ However, by this time, Dutton and
Manning (1941) in Wisconsin had already shown
that light energy absorbed by fucoxanthin was used
efficiently for photosynthesis in the diatom Nitzschia
closterium, and Dutton et al. (1943) had clearly
established that this process took place by transfer of
energy absorbed by fucoxanthin to Chl a, because
excitation of fucoxanthin led to Chl a fluorescence
(i.e., the phenomenon of sensitized fluorescence was
observed). This was a clear case of the light-harvesting
function of one of the carotenoids in vivo (Dutton,
1997). Further coverage of the history on this topic
will be presented in Section II.

Carotenoids are known to have another major
function, i.e. that of photoprotection of reaction
centers, pigment-protein antennae, and cells and
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tissues (Krinsky, 1968, 1979). The work of Roger
Stanier and his coworkers provided the most
compelling evidence for the belief that carotenoids
perform a photoprotective function. In 1955 Griffiths
et al. discovered that a blue-green (BG) mutant of the
non-sulfur purple bacterium Rhodopseudomonas
(now Rhodobacter) sphaeroides, which is deficient
in colored carotenoids, is photosensitive in the
presence of air. The mutation was lethal. It was
suggested that carotenoids are universally associated
with photosynthetic systems because they protect
these systems against photodynamic damage
catalyzed by BChl (in photosynthetic bacteria) or by
Chl (in plants and algae). More recently, a third
function was discovered in higher plants exposed to
strong light. Zeaxanthin and antheraxanthin, formed
from violaxanthin by the xanthophyll cycle
(Yamamoto et al., 1962) increase non-radiative
dissipation of energy as heat in the pigment bed of
the antenna of Photosystem II (PS II) (Demmig et al.,
1987; Gilmore et al., 1995). Further discussion on
this topic will be presented in Section IV (Horton et
al., 1994, Demmig-Adams et al., 1996; Yamamoto
and Bassi, 1996; Gilmore, 1997).

The reader is referred to Siefermann-Harms
(1987a, b) for earlier discussions on the light
harvesting and photoprotective functions of
carotenoids.

D. Franck-Condon Principle

Pigment excitation occurs after the absorption of
light. This promotes the molecule from the ground
state      to an excited state          All further reactions
occur after de-excitation of this higher excited state.
This upward transition occurs in 1–2 fs in visible
light. A historical suggestion was that of James
Franck (1925; who had shared, with Hertz, the 1925
Nobel Prize in Physics for the experimental
verification of the quantum theory). He argued simply
that because of the large masses of the nuclei in a
molecule, their relative momentum cannot be directly
affected by an electronic transition, so that those
transitions will be most likely that conform most
closely to a Principle: The nuclei do not move during
an electronic transition. Thus, on a diagram of energy
(ordinate) versus distance between the nuclei of a
diatomic molecule (abscissa), this transition is vertical
promoting the electron from the lowest vibrational
state of a molecule in the ground state to a higher
vibrational state of the excited state (e.g. or of

the molecule (Fig. 2). The molecule in the excited
state then dissipates immediately (within 10 to 100
fs) some energy as heat and the electron reaches the
lowest vibrational level of the excited state. When
the molecule relaxes to the ground state giving off
light (fluorescence), it generally occurs at longer
wavelength than the absorbing wavelength
(Rotverschiebung, the red shift, Franck, 1927). The
Franck-Condon principle, then, explains the observed
red shift (Stokes, 1852) of the fluorescence spectrum
from the absorption spectrum. The history of how
the principle became known as the Franck-Condon
principle was beautifully presented by Condon (1947).
The original idea is in a paper at a Faraday Society
meeting in London by Franck (1925); the proofs of
this paper were sent to his student Hertha Sponer,
who was then at the University of California at
Berkeley on an International Education Board
Fellowship. She generously shared the proofs with
Condon; he was able to generalize Franck’s ideas
(Condon, 1926). Condon (1947) states, ‘This work
was all done in a few days. Doctor Sponer showed
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me Franck’s paper one afternoon, and a week later all
the quantitative work for my 1926 paper was done.’
With carotenoids, one does not usually observe by
conventional absorption spectroscopy, transitions
involving the first singlet excited state, but mainly
the second singlet state or , The transition
from the state to is optically forbidden (for a
fuller discussion, see Chapter 8, Christensen; also
see a review by Koyama, 1991). Fluorescence of
carotenoids in general is very weak to
transition).

II. Excitation Energy Transfer: Sensitized
Fluorescence and Photosynthesis

The first major function of carotenoids is to act as an
accessory pigment, i.e., to capture light and transfer
the energy to Chl a to drive photochemistry. The
methods used to obtain evidence for this are basically
two: (1) measurement of action spectrum of photo-
synthesis in the region carotenoids and Chls absorb
and evaluation of the quantum efficiency of light
absorbed by carotenoids in photosynthesis; and (2)
measurement of action spectrum of Chl a fluorescence
in the region where carotenoids and Chls absorb and
evaluation of the quantum efficiency of excitation
energy transfer from the carotenoids to Chl a. The
latter technique is called the sensitized fluorescence
method. If the energy donor is fluorescent, one would
observe decreases (quenching) in donor fluorescence
and increases in acceptor fluorescence when the
donor is excited, whereas excitation of the acceptor
would lead to acceptor fluorescence only; this method
was first applied by Cario and Franck (1923) in
gases. Since then it has been successfully used in
liquids, solids, proteins and photosynthetic systems
(Knox, 1975; Stryer, 1978; Pearlstein, 1982; van
Grondelle and Amesz, 1986; Frank et al., 1991; van
Grondelle et al., 1994).

A. Photosynthetic Yields in Different Wavelength
Regions

Engelmann (1883, 1884) was an ingenious scientist
(Kamen, 1986). He projected the visible spectrum
on to green, red and brown algae, mounted on the
stage of a microscope, and used the number of
aerotactic motile bacteria accumulating in the
different wavelengths of the light as an indication of
the rate of oxygen evolution. He concluded that light

absorbed by various accessory pigments (including
carotenoids, particularly fucoxanthin) was used for
photosynthesis. Warburg and Negelein (1923), using
precise manometric methods, measured absolute
quantum yields of oxygen evolution by the green
alga Chlorella in different colors of light. Although
the absolute quantum yield of oxygen evolution in
blue light, where both carotenoids and Chls absorb
light, was later questioned by others, it was slightly
lower than in the red where only Chls absorb light.
Thus, this experiment indicated that, although
carotenoids contribute to photosynthesis, their
efficiency is somewhat lower than that of Chls. It was
Montfort (1936, 1940) who compared, although rather
crudely and from unreliable experiments, absorption
by various extracted photosynthetic pigments and
oxygen evolution in various colors of light, and
concluded that light absorbed by fucoxanthin of
marine brown algae is fully utilized in photosynthesis.
The first extensive and reliable measurements on the
quantum yield of oxygen evolution as a function of
wavelength of light (i.e., of the action spectrum of
photosynthesis) were, however, carried out by
Emerson and Lewis (1942, 1943) on the cyano-
bacterium Chroococcus and the green alga Chlorella
(Fig. 3). These experiments were done with a large
home-built monochromator with the grating obtained
from Mt. Wilson observatory and the use of the most
precise manometry, where 0.01 mm pressure changes,
due to oxygen evolution, could be measured!
Independent of Emerson’s work, Dutton and Manning
(1941) carried out similar experiments with the
diatom Nitzschia closterium (now Phaeodactylum
tricornutum), using a dropping mercury electrode.
Their conclusions were that fucoxanthin in the diatom
is almost 90% efficient, whereas the carotenoids are
about 40–50% efficient in Chlorella, and much less
efficient (perhaps, only 10%) in Chroococcus.
Although Wassink and Kersten (1945,1946) came to
the same conclusion as Dutton and Manning (1941),
it was Tanada (1951), a student of Emerson, who
provided the most thorough and precise data. He
used the Emerson-Lewis monochromator, and
showed a very high quantum yield of oxygen evolution
at 500 nm, where fucoxanthin absorbs most of the
light (Fig. 4). On the other hand, Haxo and Blinks
(1950) made a large number of action spectra of
photosynthesis plotted per incident photons in many
marine algae, but were able to make only qualitative
statements regarding energy transfer from carotenoids
to Chl a. They concluded that carotenoids were
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relatively inactive in the green alga Ulva, but
considered that some carotenoids must be active in
photosynthesis in some systems. For a review on the
action spectra of photosynthesis, see Fork and Amesz
(1969).

Measurements on the action spectra of photo-
synthesis do not distinguish between the direct
photochemistry by the carotenoids versus that by
Chl a after excitation energy transfer from them to
the Chls. This distinction is possible only from
measurements on excitation energy transfer.

B. Excitation of Chl a Fluorescence by Different
Wavelengths of Light: Sensitized Fluorescence

Vermeulen et al. (1937), in the laboratories of L. S.
Ornstein of Utecht and A. J. Kluyver of Delft,
published their results on the intensity of fluorescence
per quantum absorbed as a function of wavelength of
light for the green alga Chlorella. Although the
measured quantum yields of Chl a fluorescence were

too low to be true, the yield of Chl a fluorescence
after excitation by 496 nm light was about 20% lower
than after excitation at 607 nm. The authors stated
that both the quantum yield of the Chl a fluorescence
and that of photosynthesis (Warburg and Negelein,
1923) were independent of wavelength in the region
where only Chl a absorbs. Since the data show 10–
30% decreases in the blue (see Table III in Vermeulen
et al., 1937), we can conclude that carotenoids did
not transfer 100% of their excitation energy to Chl a
although the authors did not make any comment on
this problem.

The first and clear evidence for excitation energy
transfer from fucoxanthin leading to Chl a fluores-
cence was obtained by Dutton et al. (1943). It was
demonstrated that light absorbed by fucoxanthin was
almost 90% as efficient in producing Chl a
fluorescence as was light absorbed by Chl a itself.
This was the clearest pioneering paper dealing with
sensitized fluorescence evidence for excitation energy
transfer in photosynthesis (see Dutton, 1997, for the
experimental background prior to the actual
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experiment). Excitation energy transfer, in general,
in photosynthesis was implied already in the paper of
Gaffron and Wohl (1936) when they were explaining
the photosynthetic unit experiments of Emerson and
Arnold (1932a,b). Further, Oppenheimer (1941) had
called it internal conversion while thinking about the
still earlier unpublished experiments of William
Arnold (see Knox, 1996, for the history of this work,
as well as Arnold and Oppenheimer, 1950). Wassink
and Kersten (1946) confirmed the conclusion of
Dutton et al. (1943) on excitation energy transfer
from fucoxanthin to Chl a.

Although Van Norman et al. (1948) did not really
discuss excitation energy transfer from phycoerythrin
(a phycobilin, not a carotenoid) to Chl a in the red
algae they had examined, it was clear that the higher
yield of red fluorescence by excitation with green
light, absorbed by phycoerythrin, than by red light,
absorbed by Chl a, suggested efficient excitation
energy transfer from phycoerythrin to Chl a. Excellent
evidence for this transfer was published by French
and Young (1952), and was known to and fully
recognized by L. N. M. Duysens (1951, 1952). No
discussion of energy transfer from carotenoids to
Chl a is available in the papers of French and
coworkers. The classical work of Duysens (1951,
1952) established that: (1) carotenoids transfer 35–
40% of their absorbed energy to bacteriochlorophyll
a (BChl a) in the B890 complex of Chromatium
strain D, and about 50% to BChl a in the B890
complex of Rhodospirillum molischianum; (2) about
40% of energy absorbed by carotenoids is transferred
to Chl a in green algae; and (3) about 70% of energy
absorbed by fucoxanthin is transferred to Chl a in
diatoms and brown algae. In none of the early
experiments, except for the work on fucoxanthin,
was any distinction made between carotenes and
xanthophylls. In 1956, Arnold and Meek presented
their work on the depolarization of Chl a fluorescence
(see Perrin, 1926, 1929), thus supporting clearly the
concept of excitation energy migration in photo-
synthesis. To me, this was an important experiment
of its time.

When I joined the research group of Robert
Emerson in 1956, Emerson was very keen that I work
on the problem of the separate roles of carotenes and
xanthophylls in photosynthesis. I grew several types
of algae (Tribonema, Muriella, Tolypothrix) in
different colors and intensities of light and extracted
carotenes and xanthophylls and monitored the
variations in the ratios of the two groups of carotenoids

under various experimental conditions. Unfortunately,
for me, Emerson was not interested in measuring
action spectra of Chl a fluorescence, but was only
interested in measuring quantum yield action spectra
of photosynthesis, an art he had perfected. The
progress on my research was extremely slow due to
my impatience, the tedious nature of manometry and
difficulties in measuring absolute quantum yield of
photosynthesis in low intensities of different
wavelengths of light. My work was never finished in
spite of piles and piles of data I had collected.
(I moved on to other research after Emerson’s death
on February 4,1959.) However, Goedheer (1969a, b;
see his review, 1972), also from the same laboratory
as Duysens, published a paper on chloroplasts treated
with petroleum ether (this treatment selectively
removes carotenes, not xanthophylls) and concluded
that, in red algae and in cyanobacteria whose
phycobilins he had also removed,  carotene transfers
energy to Chl a (of PS I with 100% efficiency,
whereas the carotene of green algae and greening
leaves transfers energy to Chl a of both PS I and II.
Surprisingly, Goedheer concluded that xanthophylls
in these organisms do not transfer any energy to
Chl a. The observed peaks for the carotenoids were
at 471 nm and 504 (or 506) nm, at 77K, in the action
spectra of Chl a fluorescence. I believe there is a
need for further research on this topic in intact
systems without such solvent treatments, as used by
Goedheer. There is, however, evidence that lutein, a
xanthophyll, transfers energy to Chl a with 100%
efficiency in the isolated light harvesting complex
(LHC) of Lactuca sativa (see Siefermann-Harms
and Ninnemann, 1982). Although many authors state
that violaxanthin transfers excitation energy to Chl
a, Barrett and Anderson (1980) could not detect any
significant excitation energy transfer in the green
Chl a/c-violaxanthin protein from the brown alga
Acrocarpia paniculata.

After I finished my PhD under Eugene Rabinowitch
and had established that Chl a was in both the
photosystems (Govindjee and Rabinowitch, 1960)
and that Chl a fluorescence measurements can be
used to support the existence of two light reactions
and two photosystems (Govindjee et al., 1960;
Duysens, 1989), I went back to measure the action
spectra of Chl a fluorescence, but not so much from
the point of deciding the role of carotenoids in
photosynthesis, but of simply using Chl a fluorescence
as an intrinsic, sensitive, and non-invasive probe of
photosynthesis (Govindjee, 1995). A major interest

7
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was in using temperature dependence of fluorescence
down to liquid nitrogen and helium (4 K) temper-
atures. Figure 5 (Cho and Govindjee, 1970a) shows
the absorption spectra and action spectra of Chl a
fluorescence in the green alga Chlorella pyrenoidosa
at 77 and 4K. Several bands can be observed including
the one at 491 nm from carotenoids. Excitation
energy transfer from carotenoids to Chl a is clearly
indicated, but no further information is available.
With the blue-green alga (cyanobacterium) Anacystis
nidulans, bands at 472 nm and 505 nm, due to
carotenoids, are observed (Fig. 6, Cho and Govindjee,
1970b; also see Kramer et al., 1981, for similar data
on spinach and barley) in the action spectra of Chl a
fluorescence, again showing energy transfer from
carotenoids to Chl a. In grana and stroma lamellae
fractions from thylakoids, Gasanov et al. (1979)
calculated the efficiency of excitation energy transfer
from the carotenoids (without distinction between
carotenes and xanthophylls) to Chl a (Fig. 7). It

appears that there are two pools of carotenoids, one
absorbing at shorter wavelengths and transferring
energy to Chl a with an efficiency of about 40–50%
and another at slightly longer wavelengths transferring
energy, with an efficiency of about 20–25%. This
conclusion has never been confirmed or pursued, and
the question of the precise roles of carotenes and
xanthophylls in light harvesting remains still an open
question worthy of research.

It was already known in the nineteenth century
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that a part of another carotenoid (peridinin) is bound
to a protein in vivo in dinoflagellates (Schuett, 1890).
The excitation spectrum of Chl a fluorescence in the
chromoprotein from Amphidinium carterae, obtained
by Haxo et al. (1976), showed that light absorbed by
peridinin is transferred efficiently to Chl a. Song et
al. (1976) showed 100% efficiency of energy transfer
from peridinin to Chl a in Chl a-proteins of two
dinoflagellates, a Glenodinium sp. and Gonyaulax
polyedra. Further, efficient energy transfer has been
reported from siphonaxanthin (absorbing in the green
region) to Chl a in the thalli of the green algae Ulva

9

japonica and Ulva pertusa (Kageyama et al., 1977)
and in the isolated green protein, containing
siphonaxanthin, from Codium (Anderson, 1983; also
see a review by Govindjee and Satoh, 1986).

C. Resonance Excitation Transfer Model
Compared to Electron Exchange

As already mentioned, evidence for excitation energy
transfer to Chl a was established, first from
fucoxanthin and then from peridinin, as well as from

This raises the question of how excitation
energy moves from one molecule to another. In
1940, William Arnold had observed excitation energy
transfer from phycocyanin to Chl a and had discussed
it with JR Oppenheimer (see Arnold, 1991, p. 77).
Knox (1996) has traced the history of Arnold’s
contribution; he states that the dependence of
excitation energy transfer (to be evolved later by
Förster) must have been evident to Oppenheimer in
whose 1941 paper the conclusion of Arnold and
Oppenheimer (1950) was already stated. There are
two major theories for exciton transfer: (A) Förster’s
resonance energy transfer mechanism (Förster, 1946,
1948, 1965) (called the Heller-Marcus mechanism
in the crystal field) that depends upon the transfer of
excitons where the decay of the excited state in the
donor molecule is coupled with the upward transition
promoting the ground state of the acceptor to the
excited state. Energy (i.e., hole and electron together)
is transferred from one molecule to the other. This
mechanism is based upon a dipole -(induced) dipole
interaction and includes the following: (1) an
dependence ofenergy transfer, where R is the distance
between the donor and the acceptor; (2) an appropriate
orientation of the dipoles for a efficient transfer; and
(3) a good proximity of the energy levels, as measured
usually by the overlap integral of the absorption
spectrum of the acceptor molecule and the fluores-
cence spectrum of the donor molecule (Knox, 1975;
van Grondelle and Amesz, 1986). [The depen-
dence was clearly proven in in vitro by studying
excitation energy transfer from an group
at the carboxyl end of a polypeptide to the energy
acceptor dansyl group at the amino end, when the
distance was changed by spacers of oligomers of
poly-L-proline (Stryer and Haugland, 1967).] (B)
Dexter’s electron exchange mechanism (Dexter,
1953); here, there is electron exchange, i.e., the
simultaneous movement of two electrons between
the molecular orbitals of the donor and acceptor
molecules. This mechanism requires extremely close
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proximity of the donor and acceptor molecules. The
energy level diagram (the Jablonski diagram,
Jablonski, 1935) shows that the energy level of the
optically allowed        state of the carotenoid
molecule is higher than the     level of Chl or BChl.
In general, however, the lifetime of the     state of the
molecules is too short and most of the de-excitation
occurs by loss of heat and the attainment of the
state. There are, however, reports that excitation
energy transfer may be possible originating from
(see Chapter 8, Christensen). The consensus is that
the lower level of carotenoids is expected to be
involved in excitation energy transfer. Now, since the

to is optically forbidden, it has been
suggested that the singlet energy transfer reaction,
involving the states, must take place through the
electron exchange mechanism. For a review see Frank
and Cogdell ( 1993).

I consider it interesting to mention an old idea of
Platt (1959) who predicted that energy can be
transferred from carotenoids to Chls, but entertained
the possibility of energy transfer from Chl to a
charge-separated state involving carotene. He had
predicted large red shifts from an absorption at 480
nm, to the orange-red region, and then to 1100 nm
for various states of carotenes. No one since then has
provided any specific experimental support for Platt’s
ideas.

III. The 515 nm Effect: Carotenoids as a
Microvoltmeter

An outline of the history of the role of carotenoids in
photosynthesis would certainly be incomplete without
a discussion of the so-called 515 nm effect ( 518
as some call it). When a pigment is placed in an
electric field, its absorption spectrum is shifted
because the field changes the energy levels of the
pigment. This is so-called Stark effect. During
photosynthesis, electrons are transferred from one
side of the thylakoid membrane to the other side
since the primary electron donors (P680, P700, P870,
etc) are located on one side and the stable electron
acceptors on the other side (Fig. 8). This produces a
membrane potential (electric field). Thus, the light-
absorbing properties of the pigments present in the
membrane are then affected as a result of the Stark
effect; this produces what we call electrochromism.
Carotenoids are affected in this way and are
responsible for a major portion of the absorption
change ( 515 or

A positive absorbance change around 515 nm was
discovered in the green alga Chlorella, in a leaf, in
the thallus of a marine alga, and in the blades of
Valisneria (Fig. 9) by Duysens (1954) when he was a
visiting fellow at the Carnegie Institute of Washington
at Stanford, after his brief stint as a fellow at the
UIUC, Urbana, Illinois, with Eugene Rabinowitch.
This positive change was accompanied by negative
changes at 480 nm and 420 nm; the latter was
assigned to cytochrome f. It was Strehler (1957) who
suggested its relationship to carotenoids (Govindjee
and Govindjee, 1965). Wolff et al. (1969), in the
laboratory of H. T. Witt, pioneered the relationship of
the 515 nm change to the fast charge separation
processes at the reaction centers because they
observed that the change occurred within nano-
seconds after a flash of light. It was later shown by
H. T. Witt and coworkers that about 50% of the fast
change arises from PS I and the other 50% from PS
II (see e.g., a review by Witt, 1975). According to the
chemiosmotic hypothesis of Peter Mitchell (1961),
proton motive force (i.e., and is used to
produce free ATP. The 515 nm change was found to
decay faster in the presence of gramicidin D, an
uncoupler of photophosphorylation, as expected if
the change is a monitor of membrane potential (Junge
and Witt, 1968). I note that in this paper, the authors
assumed that they were monitoring changes only in
Chl b at 515 nm. Jackson and Crofts (1969) made
another important observation in bacteria. They found
a shift in the carotenoid spectrum (523 minus 509
nm absorbance change) in darkness when a potential
is generated that is positive with respect to the inside
of the chromatophores; the shift mimicked that
observed as a response to light. De Grooth et al.
(1979) observed a flash number dependency of the
biphasic decay of the electrochromic shift of the
carotenoids, related to the changes in the membrane
potential, in the chromatophores of Rhodobacter
sphaeroides. The carotenoid absorbance change is
accepted now to be a monitor of the membrane
potential.

IV. Photoprotection

The hypotheses to explain how carotenoids play a
role in protecting plants against damage by excess
light have been discussed very extensively. Crucial
work on the topic of photoprotection was done in the
summer of 1954 in C. B. van Niel’s Lab at the
Hopkins Marine Station by Roger Stanier and his
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colleagues (Griffiths et al., 1955; Sistrom et al.,
1956; Stanier, 1960; the participation of Germaine
Cohen-Bazire in this work was acknowledged). Based
on experiments with a blue-green mutant of
Rhodopseudomonas (now Rhodobacter) sphaeroides
that contained no colored carotenoids, it was
suggested that ‘the primary function of carotenoid
pigments in phototrophs is to act as chemical buffers
against photooxidation of other cell constituents by

(B)Chl, thus conferring a high degree of immunity to
endogenous photosensitization.’ The mutant was
unable to live normally. The mechanism of action
was shown later to involve removal of singlet oxygen
by carotenoids, and the formation of triplet states of
carotenes (see reviews by Krinsky, 1968, 1971). We
shall not discuss this function further. However, we
note that Mimuro et al. (1995) have detected two

molecules in the reaction center of PS II
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by fluorescence and linear dichroism spectroscopy.
It was shown that the two molecules in
the reaction center of PS II are spectrally different
and transfer excitation energy to Chl a at 77 K; one
has an absorption band at 489 nm, and the other has
bands at 506 and 467 nm. It is assumed that these
carotene molecules must function to protect the
reaction center Chls from damage. (Telfer et al.,
1994). Further, Trebst and Depka (1997) have shown
that               is essential for the assembly of the
D1 protein into functional PS II.

One of the several mechanisms by which plants
protect themselves against excess light is by
dissipating excess energy as heat through the
participation of the xanthophyll cycle and the pH
gradient (see reviews by Horton et al., 1994, 1996;
Demmig-Adams et al., 1996; Demmig-Adams and
Adams, 1996; Gilmore, 1997; Gilmore and Govind-
jee, 1999, and Chapters 14, Demmig-Adams et al.
and 15, Horton et al.). De-excitation of a molecule,
excited by light, occurs by fluorescence, heat,
excitation energy transfer, or photochemistry. At
high light intensities, when photosynthesis is
saturated, unusual photochemistry can take place
that can lead to damage of the photosynthetic
apparatus. This could be avoided if there were a

Govindjee

mechanism to increase energy loss as heat or
fluorescence. However, during exposure of plants to
high light, Chl a fluorescence intensity has been
shown to decrease (fluorescence quenching). One of
the current suggestions is that excess light somehow
promotes the formation of zeaxanthin from
violaxanthin, with antheraxanthin as an intermediate.
It is now generally believed that it is mostly zeaxanthin
(or antheraxanthin) that removes the excess energy
from the excited Chls and loses this energy as heat.
The history of the xanthophyll cycle goes back to
Sapozhnikov et al. (1957), who first observed that
violaxanthin levels changed in light/dark or high
light/low light treatments in Sakhlin buckwheat
(Polygonum sacchalinense F. Schmidt), in cyclamen
(Cyclamen persicum L), broad bean (Vicia faba L.)
and medicinal dandelion (Taraxacum officinale L s.l).
They thought that violaxanthin was converted into
lutein and speculated on the possibility that this may
have significance for oxygen evolution in photo-
synthesis. Yamamoto got involved at this stage and it
was he who discovered the currently accepted
stepwise and cyclical pathway, now known as the
xanthophyll cycle (Yamamoto et al., 1962; Yamamoto,
1979). The stepwise pathway excluded the possibility
of involvement in photosynthetic oxygen evolution.
Further, the kinetics was too slow and Yamamoto
showed soon thereafter that the effect of light was
indirect. There have been many other researchers in
this field that are also currently active. It was Barbara
Demmig, Olle Björkman and their coworkers
(Björkman, 1987: in this paper the author mentions
two unpublished manuscripts of Demmig and
Björkman; Demmig et al., 1987: work done in the
pharmaceutical laboratory of Professor Czygan;
Björkman and Demmig-Adams, 1994) who suggested
that the excess energy is lost as heat in the antenna
complexes, and related the phenomenon to the
xanthophyll cycle. The concept that there is an
increase in heat loss assumes that the observed
decrease in fluorescence intensity is indeed a decrease
in the fluorescence yield. A decrease in fluorescence
intensity could also be due to a decrease in the
absorption cross-section of the fluorescing com-
ponent. While he was in my laboratory Adam
Gilmore, who had earlier worked with Harry
Yamamoto and Olle Björkman, made the measure-
ments on the lifetime of Chl a fluorescence that
directly measures the quantum yield of fluorescence
(Gilmore et al., 1995, 1996, 1998). We established
that in thylakoid samples there is a dimmer switch in
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which the fraction of a long-lifetime component (a
2 ns component) of fluorescence decreases with a
concomitant increase in the fraction of a short-lifetime
fluorescence component (a 0.4 ns component). The
latter component was suggested to have increased
dissipation of energy as heat because, in these
experiments, photochemistry was blocked by the use
of a herbicide, diuron. It is also now clear that both a
proton gradient (or a low internal pH) and the presence
of zeaxanthin (or antheraxanthin) are required for
this process. The protons are suggested to have a dual

role: (i) activation of de-epoxidase that leads to
increased conversion of violaxanthin into zeaxanthin,
and (ii) conformational changes that lead to efficient
binding of zeaxanthin or (antheraxanthin) on antenna
complexes where dissipation of energy as heat takes
place (Fig. 10). Whether the heat loss occurs via
zeaxanthin directly, as stated above, or is induced in
Chl by association with zeaxanthin remains an open
question. The possibility that state of zeaxanthin
(that has not yet been directly observed) lies below
the state of Chl a (Frank et al. 1994; Owens, 1996)
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is a grand and a reasonable hypothesis. It makes it
easy to accept that Chl a can transfer excitation
energy to zeaxanthin. Several investigators have now
established that the photoprotection mechanism need
not require light-harvesting complex IIb (Gilmore et
al., 1996; Briantais et al., 1996). Thus, it was suggested
that the inner antenna complexes are involved. Bassi
et al. (1993) have shown that the xanthophyll-cycle
pigments are preferentially associated with the inner
antenna Chl a complexes (CP) 26 and 28. This idea
was elegantly supported by Crofts andYerkes (1994)
when they compared the amino acid sequences ofthe
various light harvesting complexes (LHCIIb, CP26,
CP28, etc). Current research on the mutants of
Chlamydomonas reinhardtii and Arabidopsis
thaliana, that are blocked in the interconversions of
the xanthophyll-cycle pigments, are providing
information on the molecular mechanism of the
photoprotection process (Niyogi et al., 1997a,b, 1998;
Pogson et al., 1996, 1998). A possibility has been
raised that lutein may also be important in the
mechanism of photoprotection in Chlamydomonas,
but not in Arabidopsis.

Polivka et al. (1999) have recently reported a
direct observation of the energy gap between the
and states of violaxanthin and zeaxanthin and
from that deduced the energy of their states. The

implication to the mechanism of photoprotection
will soon be investigated by several research groups.

V. Conclusions

What is certain is that both and the
xanthophyll fucoxanthin transfer excitation energy
to Chl a; in addition, protects against
photochemical damage of the reaction centers, and
the xanthophyll zeaxanthin protects plants against
excess light by initiating reactions, in combination
with those initiated by pH gradient, that lead to loss
of excess energy as heat. Much research is needed to
prove the roles of other carotenoids (e.g., lutein,
violaxanthin, and others). It is however currently
assumed that violaxanthin acts as a light harvester,
i.e., transfers energy to Chl a, and that lutein may
indeed substitute for zeaxanthin in some systems.
Research on both the mechanism of excitation energy
transfer from Chls to carotenoids and vice versa is
ongoing. The availability of structures at atomic
levels is certainly important for this purpose. For
example, the atomic level structure of the reaction
center of photosynthetic bacteria shows a carotenoid
(1,2-dihydroneurosporene, Deisenhofer and Michel,
1989). In addition, the peridinin-Chl a complex from
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Amphidinium carterae also shows precisely where
the carotenoid peridinin is located in this antenna
complex (Hofmann et al., 1996; Fig. 11). Kühlbrandt
et al. (1994) have provided the atomic level structure
of LHCIIb, the major light harvesting Chl a/Chl b
complex of plants and green algae; this has allowed
the rationalization of the proposed mechanisms of
excitation energy transfer among the Chls.

In my laboratory, Xiong et al. (1996, 1998) have
produced a hypothetical structural model of PS II
reaction center where the two molecules
are parallel to each other, although there is reason to
believe that they may be perpendicular to each other
(see e.g., Mimuro et al., 1995; Fig. 12). The entire
field seems to be still in its infancy and the present
book should help encourage further research to unfold
the relationship between the molecular structure and
the molecular function of all the carotenoids.
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