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2.1 INTRODUCTION

Cyanobacteria, or blue-green algae as they were called, are a group of bacteria that obtain their energy
through oxygenic photosynthesis (for a perspective, see [1]; for evolution, see [2]).Cyanobacteria
converted the early reducing atmosphere into an oxidizing one and changed the composition of life
forms on Earth. The consensus is that chloroplasts in plants and eukaryotic algae have evolved from
cyanobacterial ancestors via endosymbiosis [3]. In this chapter, we will discuss the structure and
function of the water-oxidizing complex (WOC) in cyanobacteria [4,5].
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Using the energy from sunlight, photosynthesis converts CO, into organic compounds [6,7]. In
plants, algae, and cyanobacteria, photosynthesis uses CO, and water, and releases oxygen as a waste
product. In these oxygenic photosynthetic organisms, a linear electron-transport system is used
for the conversion of nicotinamide adenine dinucleotide phosphate (NADP") to its reduced form
(NADPH); water is the ultimate source of electrons and is oxidized to oxygen in the process [8].
Oxygenic photosynthetic organisms catalyze photosynthetic water oxidation, and are therefore
responsible for the presence of oxygen in the earth’s atmosphere. This process requires two photo-
systems—photosystem I (PSI) and photosystem II (PSII)—and two light reactions (I and II), work-
ing in series, using what is commonly known as the Z-Scheme [9] (see Chapter 1 for a description of
the overall steps in oxygenic photosynthesis.). PSII (water—plastoquinone oxido-reductase) uses light
(photons) to energize specific reaction center chlorophyll molecules; this leads to electron transfer
from water, through several intermediates (coenzymes and cofactors), to plastoquinone {10]; water
is oxidized to hydronium ions and molecular oxygen [11,12]. The resulting protons generated by
the oxidation of water are used to create a proton gradient that is used by ATP synthase to generate
ATP [13]. The reduced plastoquinone (plastoquinol) transfers its electrons to PSI [14] via a cyto-
chrome bgf (Cyt byf) complex [15] where, again, protons are released into the lumen and a proton
gradient is produced across the thylakoid membrane and used for ATP synthesis. The electrons
(from PSII) transferred to plastoquinone are ultimately used, by PSI, to reduce NADP' to NADPH
or are used in cyclic photophosphorylation around PSI [13]. In Cyt bef complex, electrons pass
through several intermediates (cytochrome f, Rieske iron center) to plastocyanin (or cytochrome cg
in some cyanobacteria), which is the electron donor to PSI, in its reduced form.

The WOC, also referred to as oxygen-evolving complex (OEC), in PSII is the protein complex
that oxidizes water [3,16-19]. PSII may serve as a model to split water by sunlight, which is a pre-
requisite for a sustainable hydrogen economy [18]. In this chapter, we will review water oxidation
and the WOC in natural photosynthesis (see Wydrzynski and Hillier [19] for reviews that deal with
both natural and artificial photosynthesis and their relationship to “Solar Fuels”).

2.2 A BIT OF HISTORY OF PHOTOSYNTHESIS

Joseph Priestley (1733-1804) described the ability of plants to generate “phlogiston” (the power to
store the air which had been injured by the burning of candles); this was the discovery of oxygen
evolution by plants [6,20]. During this period of “New Chemistry,” Carle Wilhelm Scheele (1742~
1786) and Antoine Laurent Lavoisier (1743-1794) identified this gas as oxygen. Jan Ingenhousz
(1730-1799) discovered the role of light and the importance of the green color (later established
as chlorophyll) of plants, and Jean Senebier (1742-1809) discovered the role of CO, in photosyn-
thesis. Nicholas Theodore de Saussure (1767—1845) established the role of water, and finally Julius
Robert Mayer (1814-1878) provided the concept that in photosynthesis light energy is converted
into chemical energy. Robert Hill (1899-1991) discovered that when “chloroplasts™ were exposed
to light in the presence of an artificial electron acceptor, oxygen evolution was observed; this “Hill
reaction” shows that carbon assimilation and oxygen evolution are not obligatorily linked and two
distinct systems may exist [21]. (For a timeline of photosynthesis see [22])
There are two parts to photosynthesis (Figure 2.1) [7]:

1. The reactions that depend directly on light take place in specific pigment-protein com-
plexes in the thylakoid membranes; they are called the “light reactions.” Here, light energy
is converted into chemical energy. The end product of this set of reactions, which includes
many dark reactions as well, is the production of oxygen, of the reducing power (NADPH)
and of the ATP. Production of oxygen is the focus of this chapter.

2. The so-called dark reactions that do not depend directly on light take place in the stroma or
cytoplasmic region; here CO, is converted to sugars. The dark reactions involve a cycle called the
Calvin—Benson cycle, in which CO, and energy from NADPH and ATP are used to form sugars.
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FIGURE 2.1 Carbon fixation and oxygen evolution take place in two distinct spaces in oxygenic photo-
synthesis. The diagram shows a schematic view of light-powered hydrogen production during oxygenic
photosynthesis, as well as carbohydrate synthesis that can also be followed by hydrogen production. The
photosynthetic processes are driven by light energy captured by the light-harvesting compiexes (LHCII and
LHCI) of PSII and PSI. Electrons are ultimately derived from H,O by its oxidation at the water-oxidizing
complex (WOC) of PSII; these electrons are passed along the photosynthetic electron-transport chain via
plastoquinone (PQ), the cytochrome bg/f complex (Cyt by/f), plastocyanin (PC) (or cytochrome cg), PSI,
and to ferredoxin (Fd). Then, ferredoxin-NADP* oxidoreductase (FNR) transfers the electrons to NADP*
with the final production of NADPH. Protons (H* ions) are released into the thylakoid lumen by the WOC as
water is oxidized, as well as when PQH, delivers electrons to Cyt be/f complex. The proton gradient across
the thylakoid membrane is used by ATP synthase to produce ATP. The ATP and NADPH generated during
the primary photosynthetic processes are consumed during CO, fixation in the Calvin—Benson cycle, which
produces sugars and ultimately starch. Under anaerobic conditions, hydrogenase can accept electrons from
the reduced Fd molecules and use them to reduce protons to molecular hydrogen. Anaerobic conditions also
allow the use of starch as a source of protons and electrons for H, production (via NADPH, PQ, Cyt by/f, PC,
and PSI) using a hydrogenase enzyme. (From J. Photochem. Photobiol. B, 104, Allakhverdiev, S.1., Recent
progress in the studies of structure and function of photosystem 11, 1-8, 2011, Copyright 2011, with permis-
sion from Elsevier.)

In the following sections, we describe the structure and function of the manganese—calcium
cluster that performs one of the most important reactions in Nature, water oxidation.

2.3 WATER OXIDATION AND WATER-OXIDIZING
COMPLEX IN NATURAL PHOTOSYNTHESIS

Water oxidation is one of the most important reactions on the Earth since it is the source of nearly
all the atmosphere’s oxygen. The WOC is a manganese—calcium cluster that oxidizes water with
modest driving force and with a turnover of up to 50 molecules of O, released per second {23]. The
structure is expected to be the same in plants, algae, and cyanobacteria. In this section, we present
the available atomic level structure and the most accepted mechanism of water oxidation by the
Mn-Ca cluster. (We refer the readers to a small, but wonderful, book that deals with oxygen itself,
its history, and its role in the evolution of life {24].)
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2.3.1 STRUCTURE OF THE WATER-OXIDIZING COMPLEX

The first pioneering paper dealing with the structure of PSII was on the cyanobacterium
Synechococcus elongatus from the research groups of Horst Witt and Horst Saenger {25], which
was followed by structural analysis of PSII from Thermosynechococcus vulcanus by Kamiya and
Shen [26]. The first clear evidence for the cubane model came from the laboratories of James Barber
and So Iwata in 2004 [27]. These authors also provided, for the first time, information on Cain the
WOC: here was a Mn;Ca-cubane with the fourth Mn attached a bit far away [27].

The atomic level structure of the Mn,Ca cluster is important for the understanding of the mecha-
nism of water oxidation. Both extended x-ray absorption fine structure (EXAFS) and x-ray diffrac-
tion (XRD) studies have been successfully used to determine the structure of the WOC in PSII,
particularly from cyanobacteria [25-30].

The most accepted model based on XRD, EXAFS, hyperfine splitting, and other physical con-
straints is the dangler model, where three Mn ions are strongly coupled and one “dangling” Mn
interacts with the trimer [25-30]. These XRD, EXAFS, and other methods provided the arrange-
ment of all of the protein subunits and the location of the chlorophylls and other cofactors, and
formed a basis for further investigations on PSII {25-30]. However, the early investigations did not
provide enough details for the structure of the Mn,Ca cluster, the location of the substrate water
molecules, or the precise arrangement of the amino acid side chains and cofactors that may have
significant mechanistic consequences in water oxidation.

In 2011, the research groups of Jian-Ren Shen and Nobuo Kamiya significantly improved the
resolution of the PSII crystals from the thermophilic cyanobacterium T. vulcanus down to a high
resolution of 1.9 A; further, the authors analyzed their structure in details [29,30}. Their investiga-
tion has provided many more details of the structure of the WOC containing the number and loca-
tion of the bridged oxygen, the location of substrate water molecules, and the precise arrangement
of the amino acid side chains [29,30] (for a historical account, see [31]).

In this latest structure of the WOC, Umena et al. [29,30] found four manganese ions, one calcinm
ion, and five oxygen atoms that serve as oxo bridges linking the five metal ions (four manganese
and one calcium ion) (Figure 2.2). In addition, four terminal water ligands were found, two of which
were coordinated to Ca and two to the dangling Mn(Mn(4)). '

The aforementioned structure suggests that the manganese—calcium cluster could be described
as Mn,CaO4(H,0),. Of these five metal ions and five oxygen atoms, the calcium and three manga-
nese ions occupy four corners and four oxygen atoms form the other four corners of the cubane-like
structure. Regarding the Ca~O and Mn—O bond lengths, the cubane-like structure is not an ideal and
symmetric one. Another manganese ion is located outside the cubane and is linked to two manganese
jons within the cubane by one oxygen of the cubane and the fifth oxygen by a di-p-oxo bridge (an oxy-
gen atom bridged between two or three metal ions) [29,30]. The location of possible substrate water
molecules is very important for the understanding of the mechanism of water oxidation by the WOC.

A few amino acids with carboxylate and imidazole groups are coordinated to the Mn,CaO;(H,0),
cluster (Table 2.1) [29,30]. Generally, the carboxylate ion may coordinate to a metal ion in differ-
ent modes (Figure 2.3). In the WOC, only one monodentate mode of carboxylate is observed and
other carboxylate groups serve as bidentate modes [29,30]. Each of the four manganese ions has six
ligands, whereas the calcium has seven ligands (Table 2.1).

In t}ole following sections, we describe the detailed structure of the WOC revealed at a resolution
of 1.9 A.

2.3.1.1 Manganese lons :

Manganese is a trace mineral that participates in many enzymes [33]. It is found widely in Nature, but
occurs only in trace amounts in human tissues. Mn(II) or (ITI) ions function as cofactors for a number
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FIGURE 2.2 (See color insert.) (a) Structure of a cyanobacterial PSII dimer [29]. View from a direc-
tion perpendicular to the membrane normal. Molecules in green, yellow, and blue represent chlorophylls,
B-carotenes, lipids, and detergent molecules, respectively. Red and yellow balls at the lumenal surface rep-
resent Mn and Ca ions, respectively. Protein subunits are labeled in the figure. For clarity, water molecules
are omitted. (b) The entire structure of the Mn,CaOj cluster resembles a distorted chair, with the asymmetric
cubane. (From Umena, Y. et al., Nature, 473, 55-60, 2011; Kawakami, K. et al., J. Photochem. Photobiol. B,
104, 9-18, 2011.)

TABLE 2.1

Ligands for Manganese and Calcium lons in the WOC

lon Ligands

Mn(1) 3(4,-0), 1(monodentate COO"), 1(bridging COO"),
1(imidazole)

Mn(2) 3(15-0), 3 (bridging COO")

Mn(3) 3(u,-0), 1(1,-0), 2 (bridging COO")

Mn(4) 1(1,-0), 1(,-0), 2 (bridging COO-), 2(H,0)

Ca 3(u,-0), 2 (bridging COO"), 2(H,0)

Sources: From Umena, Y. et al., Nature, 473, 55-60, 2011; Kawakami, K. et al,,
J. Photochem. Photobiol. B, 104, 9-18, 2011.
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FIGURE 2.3 Unidentate (a), bidentate (b), and bridging carboxylate modes (c) [32]. In the structure of the
WOC, one monodentate mode of carboxylate is observed and other carboxylate groups serve as bidentate modes.

of enzymes in higher organisms, where they are essential for detoxification of free radicals [33]. This
element is required as a trace mineral for all known living organisms. The human body contains a
total of 15-20 mg of manganese, most of which is located in the bones, with the remainder found in
the kidneys, liver, pancreas, pituitary glands, and adrenal glands. In larger amounts, manganese can
cause a poisoning syndrome in mammals, with neurological damage, which is sometimes irrevers-
ible. The most common oxidation states of manganese in biological systems are (II), (III), and (IV).
Mn(II) often competes with Mg(IT) in biological systems. Manganese compounds with oxidation
states V, VI, and VII are strong oxidizing agents and are vulnerable to undergo disproportionation
reactions. The most stable oxidation state for manganese in many mononuclear manganese enzymes
and also manganese catalase is (II). In water, Mn(III) ion is unstable and prone to disproportionate
to Mn(II) and Mn(IV), but this oxidation state could be stabilized with many “hard” (“hard” applies
to chemical species that are small, have high charge states, and are weakly polarizable {34]) ligands
in enzymes [34]. Mn(IV) is a usual oxidation state in minerals and could be stabilized by many hard
ligands in biological systems. As shown in Figure 2.2b, there are four manganese ions in the WOC
in PSIL In this section, we discuss the details of coordination chemistry of metal ions and a few
important groups near the manganese—calcium cluster. However, it is worth mentioning that in the
manganese—calcium cluster, there is charge distribution and charge on each ion is lower than sug-
gested by its oxidation state. In other words, the Mn,CaO5(H,0), cluster is a delocalized system and
each ion should not be studied completely separately, but rather in an integrated manner.
We describe next what is known about the four individual Mn atoms.

2.3.1.1.1 Manganese(1)

The ligands around Mn(1) are similar to one of the manganese ions in manganese catalase enzymes
(Figure 2.4a). As usual, the coordination number for Mn(III) or (IV) is 6. Three 4;-O as hard ligands
and two carboxylate and one imidazole group as a borderline ligand could stabilize the oxidation
state of ITI or IV for the manganese ion. As shown in Table 2.1 and in Figure 2.4a, in the WOC
of PSII, Mn(1) has six ligands: two [L,-O, one p,-O (,-O means an oxo bridge linking n atoms
together), one monodentate carboxylate, one bridging carboxylate, and one imidazole ligand [29,30}.

2.3.1.1.2 Manganese(2)

The six ligands around this ion are three ;-O and three bridging COO~ [29,30] (Figure 2.4b).
These ligands could stabilize oxidation state of III or IV for the ion. The coordination number of
the ion is 6. The ion is connected to calcium and two manganese ions with a bridging carboxylate
and three oxo groups.

2.3.1.1.3 Manganese(3)

The six ligands around this ion are two Ji;-O, one i,-O, one |1,-O, and two bridging COO™. Four
hard p-O could stabilize Mn(IV) than Mn(III) (Figure 2.4c).

2.3.1.1.4 Manganese(4)

The ligands around this ion are one W,-O, one 1,-0, two bridging COO-, and two H,0 (Figure 2.4d)
[29,30]. These two water molecules are very important and one of them may serve as one of the
substrates for water oxidation [29,30].
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FIGURE 2.4 Mn{l) @, Mn(2) (b), Mn (3) (¢), Mn(4) (d), and Ca (¢) and their surrounding ligands. (From
Umena, Y. et al., Nature, 473, 55-60, 2011; Kawakami, K. et al., J. Photochem. Photobiol. B, 104, 9-18,2011.)

Regarding these ligands, the oxidation state of Mn(III) could be stabilized for the ion, but depro-
tonation of water molecules could stabilize the oxidation state of Mn(IV) as well as higher oxidation
states (e.g., Mn(V)).

2.3.1.2 Calcium lon

Calcium is an essential ion for many organisms, particularly in cell physiology, where the movement
of the calcium ion into and out of the cytoplasm functions as a signal for many cellular processes.
Calcium is also a major structural element in bones and teeth. The usual role of this ion is structural
and it is important for the stabilization of a number of proteins and enzymes. Calcium has been
identified as an essential cofactor in water oxidation, and the calcium-binding sites in PSII have
been previously studied by several methods. Strontium (II) is the only cation that can function-
ally substitute for calcium in the WOC [35]. In the 1.9 A structure of the WOC, calcium has seven
ligands, two [;-O, one W,-0, two bridging COO-, and two H,O molecules (Figure 2.4¢) [29,30].
Similar to water molecules coordinated to Mn(4), these two water molecules are very important and
one of them may serve as the substrate for water oxidation. The coordination number of calcium
ions varies from 6 to 10 in different compounds. Thus, a ligand may coordinate to or decoordinate
from this ion in different states of water oxidation.

2.3.1.3 Water

The location of the substrate water binding sites on the inorganic Mn,Ca core has been an impor-
tant question in the study of the mechanism of water oxidation. Hillier and Wydrzynski [36] used
130 exchange kinetics of the substrate water molecules in PSII to examine the interactions of cal-
cium and strontium with substrate water and to probe a number of point mutations surrounding
the catalytic site. The most direct approach to follow water ligand exchange is by using mass spec-
trometry. This involves the addition of 2O water followed by time-dependent sampling of the prod-
ucts. In this technique, two kinetic phases at m/e = 34, representing separate ¥0O exchange rates
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for the two substrate water molecules, were detected [36]: the slow and fast phases that show the
exchange of the two nonequivalent substrate sites. Since four water molecules are coordinated in
the structure of the WOC, two of them may serve as the substrate for water oxidation [29,30]. Other
suggested subsirates for water oxidation are -0 groups [29,30]. Another water molecule, also found
around WOC, is hydrogen-bonded to one of the u-O and one carboxylate group in this structure.
This water molecule, although less likely, could also serve as a substrate for water oxidation (Figure
2.5) [29,30}.

In PSI], there are three types of channels: for oxygen, water, and protons [29,30,37-39]; they lead
from the WOC to the lumenal side of PSII. The functional assignment of these channels has been
based on electrostatic, structural, and orientation grounds. This strategy of having separate specific
channels is expected to avoid the interaction of unwanted chemicals with the WOC and to increase
the catalytic activity of the enzyme (Figure 2.5).
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FIGURE 2.5 (a) The location of the substrate water binding sites (labeled as W1, W2, W3 and W4) on the
WOC [29,30]. (b) The figure shows channels for hydrophobic oxygen (i), water (ii), and protons (iii), all leading
to the catalytic Mn,Ca cluster of PSIL. OEC stands for oxygen-evolving complex. (Reproduced from Barber, J.,
Inorg. Chem., 41(6), 1700, 2008.)

Channel (i)



Water Oxidation and Water-Oxidizing Complex in Cyanobacteria 49

2.3.1.4 Amino Acids in the Second Coordination Sphere (D1-His 337 and CP47-Arg 357)

The imidazole nitrogen of D1-His 337 is hydrogen-bonded to one of the p-O. The role of this
hydrogen bond may be as a stabilizer for the WOC (Figure 2.6) [29,30].

There is an arginine in the second coordination sphere of WOC, CP43-Arg 357, and this resi-
due may have an important role in maintaining the structure of the metal cluster, in stabilizing the
cubane structure, and/or in providing partial positive charges to compensate for the negative charges
induced by the oxo bridges and carboxylate ligands of the WOC [29,30]. One of the guanidinium
nitrogens of CP43-Arg 357 is hydrogen-bonded to both -0 manganese-calcium clusters, whereas
the other is hydrogen-bonded to the carboxylate oxygen of D1-Asp 170 and to that of D1-Ala 344 (see
Figure 2.6). The structure shows that the distances between the nitrogens of the arginine side chain
and Ca? are 4.2 and 44 A. Also, the distances between the nitrogen atoms of the arginine side chain
and Mn(4) are 4.7 and 6.0 A. The side chain of arginine may stabilize the structure of the WOC as it
is hydrogen-bonded to two u-O bridges and one carboxylate group bridging between Ca? and Mn(2).

2.3.1.5 Chloride

The function of chloride in biology, in general, could be to contribute negative charges in the
formation of membrane potentials, responsible for the regulation of osmotic pressures in cells, to
halogenate aromatic amino acids or to produce reactive species that are bactericidal and to act,
as a bridging ligand, between heme @ and Cuy in the oxidized form of cytochrome oxidase. We
know that chloride ion is a native anion and is required for electron donor reactions in the WOC
[29,30,40—-45]. Umena et al. [29,30] have identified two chloride ions in the structure of the WOC.
Both CI” ions are surrounded by water molecules and amino acids. Umena et al. [29,30] have
suggested that the two chloride anions may function to maintain the coordination environment
of the Mn,CaO4(H,0),, allowing the water oxidation reaction to proceed properly (Figure 2.7)
(also see [45]).
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FIGURE 2.6 (a) The localization of DI1-His 337 that is hydrogen-bonded to one of the p-O in the WOC
and (b) the localization of Arg 357. (From Umena, Y. et al., Nature, 473, 55-60, 2011; Kawakami, K. et al.,
J. Photochem. Photobiol. B, 104, 9-18, 2011)
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FIGURE 2.7 Structure of the two Cl- binding sites near the Mn,CaO4(H,0), cluster. Hydrogen-bond dis-
tances are given in A. (Reproduced from J. Photochem. Photobiol. B, 104, Kawakami, K. et al., Structure
of the catalytic, inorganic core of oxygen-evolving photosystem 11 at 1.9 A resolution, 9-18, 2011, Copyright
2011, with permission from Elsevier.)

2.3.1.6 Tyrosine 161

In PSII, photons are absorbed by light-harvesting pigment-protein complexes, and excitation energy
is transferred to the reaction center chlorophyll Pgy; here, primary charge separation occurs: oxi-
dized Pgg, (Pggy*) and reduced pheophytin (Phe-) are formed [10,46,471, for details, see Chapter 1.
Then, Pgyq* is reduced by electron transfer from a tyrosine (Tyrosine 161) residue (Y), residing
on the D1 protein, to form a tyrosine radical (Y,**) [4,5]. Electrons for the reduction of Y, are
extracted from the WOC. As shown in Figure 2.8, this group forms a strong hydrogen bond with

D1-Tyr 161

H
N
l\) D1-His 190
N
e
o

M

FIGURE 2.8 The location of Tyrosine 161. (From Umena, Y. et al., Nature, 473, 5560, 2011; Kawakami, K.
etal., J. Photochem. Photobiol. B, 104, 9-18, 2011)
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one water molecule coordinated to calcium [29,30]. Another hydrogen bond is observed between Y,
and the e-nitrogen of a histidine (D1-His 190). This histidine is further hydrogen-bonded to other
amino acids or water molecules to form a hydrogen-bond network suggested as an exit channel for
protons [29,30].

2.3.2 MecHANISM OF OXYGEN EVOLUTION

2.3.2.1 Four-Electron Water Oxidation

In thermodynamic terms, a four-electron water oxidation is certainly easier than four-sequential
one-electron oxidation or two-sequential two-electron oxidation because in those cases the first
steps (H,0 to hydrogen peroxide and hydroxyl radical) are more endergonic than the four-electron
water oxidation, and result in low over-voltage for practical operations. As described later, Nature
uses a four-electron oxidation mechanism for water oxidation with lower activation energy than
other known mechanisms [5,48,49].

2.3.2.2 Flash-Induced Oxygen Evolution Pattern: The Joliot Experiment and the Kok Cycle

An elegant method to study oxygen evolution in biological systems is to activate a photosyn-
thetic system with short and intense light flashes, with appropriate dark periods, and measure
the oxygen yield on each flash. Pierre Joliot’s experiments in 1969 showed that flash illumina-
tion produced an oscillating pattern in the oxygen evolution and a maximum occurred on every
fourth flash [50-56]. These patterns are very interesting because splitting of two water molecules
to produce one oxygen molecule requires the removal of four electrons. In 1970, Kok et al. [56]
proposed an explanation for the observed oscillation of the oxygen evolution pattern. The Kok
et al. [56] hypothesis was that in a cycle of water oxidation a succession of oxidizing equivalents is
stored on each separate and independent WOC, and when four oxidizing equivalents accumulate
one by one, an oxygen is spontaneously evolved. Each oxidation state of the WOC is known as
an “S-state,” with S, being the most reduced state and S, the most oxidized state in the catalytic

@ ®)

SCHEME 2.1 Classical S-state cycle of photosynthetic water oxidation [50-58]. Absorption of a photon
causes charge separation at the reaction center Py, of PSII that leads to the formation of Y, (oxidized tyro-
sine-161 on the D1 protein) within less than 1 ps. Reduction of Y, by electron transfer (ET) from the manga-
nese complex results in S; = S,,, transition. There are several similar S-state cycle schemes. Here, we show a
plausible oxidation state of the four Mn ions in the different S-states (a). The extended S-state cycle including
not only four oxidation but also four deprotonation steps is also shown in (b). (From Grundmeier, A. and Dau,
H., Biochim. Biophys. Acta, 1817, 88, 2012.)
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cycle (Scheme 2.1) [561. It is essential to recognize that to explain the fact that the first maximum
of oxygen evolution is after the 3rd flash, and then after 7th and 11th flashes, the S, state must be
dark-stable. The S, — S, transition is light independent and in this state oxygen is evolved. All
other S-state transitions are initiated by the photochemical oxidation of Peso Pego® [56].

2.3.2.3 Oxidation States of Manganese lons in the Kok Cycle

It is well known that redox changes in the S, — S, and S; — S, transitions for the WOC are man-
ganese-based [48]. The S, — S, and the S, — S, transitions are still controversial as to whether a
metal-centered or a ligand-centered oxidation occurs [48]. In the S, = S, transition (Scheme 2.1),
rapid oxidation of two substrate water molecules occurs [48]. Based on the experimental evidence
accumulated thus far, the four Mn ions in the S,-state are believed to be Mn,(IIHMn,(IV), but a
lower valence combination may also be possible.

2.3.2.4 Mechanism of Water Oxidation in Nature

Detailed physico-chemical mechanism of water oxidation by the WOC of PSII is still not resolved [58].
There are many proposals for the mechanism of water oxidation by the WOC in PSII [48]. The most
important models are the following (Scheme 2.2):

L. Nucleophile—electrophile reaction: Pecoraro et al. [S9] have proposed that a terminal
Mn(V)=0 undergoes a nucleophilic attack by a Ca?* bound hydroxide ligand to form
a Mn-bound hydroperoxide. Brudvig et al. [60] have proposed a mechanism in which a

- Ca? ion plays a role as a weak Lewis acid. In this mechanism, a water molecule bound to
calcium reacts with a Mn(V)=0 species to form the O=0 bond through a nucleophilic
attack. Lee and Brudvig [61] provided direct support for the proposal that Ca?* plays a
structural role in the early S-state transitions, which may also be fulfilled by other cations
with similar ionic radius. Umena et al. [29,30] suggested that one of the water molecules
that is coordinated with calcium, and is near Tyr 161, may serve as one of the substrate
molecules, and the water molecule coordinated to Mn(4) may serve as the second substrate
in the O-O formation.

2. Coupling of an oxyl radical and a manganese-bound oxo-ligand: Siegbahn [62), based on
extensive DFT calculations by his research group, has suggested that a Mn(IV)-O° may
react with a manganese-bound oxo-ligand to form oxygen. In this mechanistic hypothesis,
spin alignment of the reactive oxygen atoms is important [62].

Ca Mn—_ M M:Caor

(8]
e Mn
H»0
MnV=0 ~ MnV-0*
() (b)
O\
/ M Mn Mn
Mo \J e " \ /
O o{- <——>O*\

Mn/ Mn
© (@

SCHEME 2.2 The most important proposed mechanisms of oxygen evolution by the WOC (a—d). (From
Springer Science + Business Media: Burnap, R.L. and Vermaas, W.E.J., Eds., Advances in Photosynthesis and
Respiration Functional Genomics and Evolution of Photosynthetic Systems, Probing functional diversity of
thermophilic cyanobacteria in microbial mats, Vol. 33, Chap. 2, 2012, pp. 17-46, Bhaya, D.)
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3. Reductive elimination of two bridging oxo-ligands: Riittinger et al. [63} in the research
group of Charles Dismukes proposed that a high-valent Mn-oxo-cluster collapses to form
oxygen from two bridging oxo-ligands.

4. Radical coupling mechanism: In this mechanism, two oxyl radicals (O°) are formed fol-
lowed by a radical coupling to generate the oxygen—oxygen bond [64].

Umena et al. [29,30] suggested that one oxygen that bridges between Ca, Mn(4), Mn(3), and Mn(1)
may exist as a hydroxide ion in the S, state and that it may provide one of the substrates for dioxygen
evolution. One of the water molecules coordinated to calcium or Mn(4) may provide another sub-
strate for oxygen evolution (Scheme 2.2).

Research on many WOC mutants has provided information on the role of specific amino acids in
the mechanism of oxygen evolution (see, e.g., Ref. [48]). We need to be aware that although the basic
mechanisms of oxygen evolution must be the same in all systems, it needs to be studied and checked
even within different diverse groups of cyanobacteria. We already know that just even within ther-
mophilic cyanobacteria there is functional diversity in natural populations [65].

2.4 POSSIBLE EVOLUTIONARY ORIGIN OF THE
WATER-OXIDIZING COMPLEX IN PHOTOSYSTEM 1l

The high concentration of oxygen in Earth’s atmosphere is one of the most geologically important
signatures of life. Accumulation of oxygen began after the evolution of oxygenic photosynthesis in
cyanobacteria around 3 billion years ago [66]. The increasing concentration of oxygen may have many
biological patterns, among them the evolution of “body size” [66]. However, it is an enigma as to when
and how oxygen-producing photosynthetic cyanobacteria evolved from their photosynthetic bacterial
precursors [11. It has been suggested that two of the bacterial reaction centers and PSII are evolution-
arily related [67]. However, PSII must have provided a very strong oxidation potential to oxidize water
because water is a stable molecule and to oxidize water a molecule must have a midpoint potential
greater than ~ 0.82 V versus the standard hydrogen electrode at pH 7 [67]. Py, reaction center of an
anoxygenic bacteria, has only a moderate E, (midpoint potential) value of 0.5 V and thus cannot oxi-
dize water or even tyrosine [67] (Table 2.2). :

The WOC in PSII found in cyanobacteria and in the thylakoid membranes of plant chloro-
plasts are believed to have evolved from a single common ancestor {68,69]. There are several
hypotheses for the origin of the WOC. One hypothesis suggests that the WOC originated in binu-
clear manganese active sites, including ribonucleotide reductase, catalase, and arginase [70,71].
Perhaps, Mn catalase could have been a key intermediate en route to oxygenic photosynthesis
[70,71]. Blankenship and Hartman [71] proposed that a primitive Mn catalase was the original
template upon which the modern WOC was structured. Raymond and Blankenship [72] devel-
oped an approach for determining the optimal superposition of the atoms concentrated around
the active sites of PSII and binuclear-manganese proteins. These observations support a common
structural core in the WOC and in distinct manganese binuclear enzymes. It is also possible that

TABLE 2.2
Midpoint Potential at pH=7 Relative
to the Standard Hydrogen Electrode

Compound Midpoint Potential
Peso/Pesc’ 1.1-1.4
H,0/0, 0.32
Tyr/Tyr* 1-1.1

Pyes/Pygs* 0.5
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FIGURE 2.9 A mononuclear enzyme similar to manganese superoxide dismutase (a) might have served as
an origin for catalase (b) and then the WOC (c). (With permission from Springer Science + Business Media:
Origins Life Evol. Biosphere, A possible evolutionary origin for the Mn, cluster in photosystem II: From man-
ganese superoxide dismutase to oxygen evolving complex, 39, 2009, 151-163, Najafpour, M.M.)

the development of oxygenic photosynthesis occurred in steps, the first of which involved only
mononuclear manganese enzymes—the mononuclear manganese enzymes could have been a key
intermediate en route to catalase and then to the WOC (Figure 2.9) [73].

Recently, Allen et al. [74] demonstrated that modifications of bacterial reaction centers can pro-
duce a highly oxidizing protein with a tight Mn-binding site that is redox active. Allen et al. [74]
further showed that after light-induced electron transfer from the primary donor to the electron
acceptors, the bound Mn is oxidized and can react with superoxide to produce molecular oxygen.
This interesting system could serve as a useful model for understanding the involvement of interme-
diates in the evolutionary development of PSII {74].

Williamson et al. {68] have proposed that manganese ions may have replaced iron in iron-binding
site of an enzyme and formed the precursor to the WOC. One of us (MMN) (see [75]) has also pro-
posed a novel origin for the WOC from the manganese-oxidizing bacteria. The Archaean ocean may
have sufficient Mn and Ca, ions with high affinity for interaction with the Mn oxide, and alkaline con-
ditions may have enabled protocyanobacteria to assemble mineral oxides as functional compliments
of early active site of PSIIL Thus, those bacteria did not need to do large amount of manganese oxida-
tion any more, since few manganese ions were enough to oxidize a large amount of water [75]. It is
highly likely that those manganese-oxidizing bacteria may have changed to become the water-oxi-
dizing bacteria. Water oxidation may have been an advantage for water-oxidizing bacteria because
the amount of water on Earth was huge and water-oxidizing bacteria could reproduce and survive
more easily than the other bacteria. These water-oxidizing bacteria may be the origin for cyanobac-
teria, and thus for algae and plants. In this regard, it is interesting that manganese oxides, in the form
of dispersed powders, have been tested as catalysts for the four-electron oxidation of water to oxygen
in the presence of different oxidants [76]. More interestingly, it has been shown that incorporation of
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calcium into mixed-valence manganese oxides produces a structure similar to the WOC and greatly
improves the water oxidation activity of these manganese oxides toward water oxidation [77-80].
Further, these manganese oxides, with calcium, but without any additional groups, show a structure
similar to the WOC in PSII [77-80].

2.5 STRESS AND OXYGEN EVOLUTION

Cyanobacteria, just as algae and plants, are prone to different stresses. They have, for example, cold
stress, heat stress, salt stress, water stress, and light stress. It is instructive to learn from all the sys-
tems to understand the impact of stress on cyanobacteria. We recommend the readers to consult
Refs. [81-86). Among the photosynthetic apparatus, the WOC is known to be one of the most sus-
ceptible sites of inactivation induced by various stresses. This is largely due to the unstable nature of
the protein components that constitute the WOC, as well as the vulnerable structure of the distorted
Mn,CaO; structure. For example, heating is known to release extrinsic proteins, indispensable com-
ponents for an intact WOC, of cyanobacteria and higher plant PSII, thereby inhibiting oxygen evolu-
tion [87-89]. The binding of extrinsic proteins in the WOC is weak and can also be affected by cold
stress [90] and salt stress [91], leading to their dissociation from PSII and the inactivation of oxygen
evolution. One of the primary targets of photoinhibition has been proposed to be the Mn site [92,93],
as Mn absorbs ultraviolet light, which may cause the destruction of the WOC. Thus, engineering a
system with the aim to improve stability of the WOC complex might lead to cyanobacteria and plants
that can better cope with various stress conditions. In this regard, photoinhibition by visible light and
UV radiation on PSII is an important issue. Hakala et al. [94] showed that the release of Mn ions to
the thylakoid lumen is the earliest detectable step in both UV- and visible-light-induced photoinhibi-
tion. After Mn release from the OEC, oxidative damage to the PSII reaction center occurs because
the Mn-depleted OEC cannot reduce Pggy* normally. As discussed by Vass et al. [95-98], PSII has
mechanisms to protect itself from photodamage by light, by nonradiative charge recombination, and
repair of damaged reaction center complexes.

2.6 WATER OXIDATION IN ARTIFICIAL PHOTOSYNTHESIS

The goal of artificial photosynthesis is to make different useful material or high-energy chemicals
for energy storage using sunlight [99]. Hydrogen production by water splitting may be one of the
most important goals of artificial photosynthesis [99]. To evolve hydrogen efficiently in a sustainable
manner, it is necessary to first synthesize a “super catalyst” for water oxidation, which is the more
challenging half reaction of water splitting [100]. There is an efficient system for water oxidation in
cyanobacteria, algae, and plants (see e.g. Refs. [22-27]). Published data on the Mn—Ca cluster have
provided details on the mechanism and structure of the WOC [29,30]. To design an efficient WOC
for artificial photosynthesis, we must learn and use wisely the knowledge about water oxidation and
the WOC in the natural system [101-103}.

In the end, we refer the readers to the web site of Royal Society of Chemistry for a collection of
articles : A Comment on “Artificial Photosynthesis, titled “Running on sun” is online at Chemistry
World, Royal Society of Chemistry: hitp://rsc.li/PCKq86; it is a part of a special collection http://
blogs.rsc.org/cs/2012/09/25/a-centenary-for-solar-fuels/ to mark the centenary of Ciamician’s paper
“The Photochemistry of the Future”.
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