The Photochemistry of Carotenoids Edited by #### Harry A. Frank University of Connecticut, Storrs, CT, U.S.A. #### **Andrew J. Young** Liverpool John Moores University, Liverpool, U.K. #### **George Britton** University of Liverpool, Liverpool, U.K. and #### Richard J. Cogdell University of Glasgow, Glasgow, U.K. KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON ## Contents | Pre | eface | xi | |-----|--|--| | Со | lor Plates | CP1 | | | ert I: Biosynthetic Pathways and the Distribution of Carotend
notosynthetic Organisms | oids in | | 1 | Carotenoids in Photosynthesis: An Historical Perspective Govindjee | 1–19 | | | Summary I. Introduction II. Excitation Energy Transfer: Sensitized Fluorescence and Photosynthesis III. The 515 nm Effect: Carotenoids as a Microvoltmeter IV. Photoprotection V. Conclusions Acknowledgments References | 1
2
s 5
10
10
14
15 | | 2 | Carotenoid Synthesis and Function in Plants: Insights from Mutant Studies in <i>Arabidopsis thaliana</i> Dean DellaPenna | 21–37 | | | Summary I. Scope of This Chapter II. Introduction: An Overview of Carotenoid Synthesis III. Rationale for Identifying and Studying Carotenoid Biosynthetic Mutants in Higher Plants IV. Arabidopsis as a Model System for Studying Carotenoid Synthesis and Functions in Plants V. Conclusions and Prospectus Acknowledgments References | 21
22
22
26
27
34
34
35 | | 3 | Carotenoids and Carotenogenesis in Anoxygenic Photosynthetic
Bacteria
Shinichi Takaichi | 39–69 | | | Summary I. Introduction II. Carotenogenesis III. Distribution of Carotenoids in Photosynthetic Bacteria Acknowledgments References | 40
40
41
57
65
65 | ### Part II: Structure of Carotenoid-Chlorophyll Protein Complexes | 4 | The Structure and Function of the LH2 Complex from Rhodopseudomonas acidophila Strain 10050, with Special Reference | rence | |---|---|------------| | | to the Bound Carotenoid | 71–80 | | | Richard J. Cogdell, Paul K. Fyfe, Tina D. Howard, Niall Fraser, N
Isaacs, Andy A. Freer, Karen McKluskey and Stephen M. Prince | | | | Summary I. Introduction | 71
71 | | | II. The LH2 Complex from Rhodopseudomonas acidophila | 72 | | | III. Energy Transfer Between Carotenoids and BChl in LH2
Acknowledgments | 77
79 | | | References | 79 | | 5 | Carotenoids as Components of the Light-harvesting Proteins | | | | of Eukaryotic Algae
Roger G. Hiller | 81–98 | | | Summary | 81 | | | Introduction Water Soluble Proteins | 82
83 | | | III. Intrinsic Thylakoid Proteins | 87 | | | IV. Evolution | 95 | | | V. Future Directions | 95 | | | Acknowledgements | 96 | | | References | 96 | | 6 | The Structure of Reaction Centers from Purple Bacteria Günter Fritzsch and Andreas Kuglstatter | 99–122 | | | Summary | 99 | | | 1. Introduction | 100 | | | II. Preparation of Three-Dimensional Crystals | 101 | | | III. Survey of Structure and FunctionIV. Subunits L, M, and H | 102
104 | | | V. Cytochrome Subunit | 104 | | | VI. Bacteriochlorophylls, Bacteriopheophytins, and Carotenoid | 107 | | | VII. Quinones and Non-Heme Iron | 113 | | | VIII. Clusters of Firmly Bound Water Molecules and Proton Transfer | 116 | | | IX. Comparison with Photosystem II X. Outlook | 118 | | | Acknowledgments | 118
118 | | | References | 118 | | 7 | Carotenoids and the Assembly of Light-Harvesting Complexes Harald Paulsen | 123–135 | | | Summary | 123 | | | | | | | II. Light-Harvesting Complexes of Purple BacteriaIII. Light-Harvesting Chlorophyll-a/b ComplexesIV. Photoprotection During AssemblyAcknowledgmentsReferences | 125
126
132
132
132 | |----|--|--| | | art III: Electronic Structure, Stereochemistry, Spectroscopy,
ynamics and Radicals | | | 8 | The Electronic States of Carotenoids Ronald L. Christensen | 137–157 | | | Summary I. Introduction: Low Lying Excited Singlet and Triplet States in Carotenoid II. Low-Energy, Excited Singlet States in Polyenes III. Low-Energy, Excited Singlet States in Carotenoids IV. Triplet States in Polyenes and Carotenoids: Spectroscopic Observation and Theory V. Conclusions and Unresolved Issues Acknowledgments | 139
143 | | 9 | Cis-Trans Carotenoids in Photosynthesis: Configurations, Excited-Properties and Physiological Functions Yasushi Koyama and Ritsuko Fujii | 156
State
161–188 | | | Summary Introduction Dependence of the Ground-State and the Excited-State Properties on Configuration of the Carotenoid (III. Light-Harvesting Function of All-Trans Carotenoids in the LHC IV. Photo-Protective Function of 15-Cis Carotenoids in the RC Acknowledgments References | 162
162
the
163
174
180
185
186 | | 10 | The Electronic Structure, Stereochemistry and Resonance Raman Spectroscopy of Carotenoids Bruno Robert | 189–201 | | | Summary Introduction II. Principles of Raman Spectroscopy III. Resonance Raman Spectroscopy and Carotenoid Stereochemistry IV. Resonance Raman Spectroscopy of Excited States of Carotenoids V. Resonance Raman of Carotenoid Molecules In Vivo: Light-Harvesting Proteins VI. Resonance Raman of Carotenoid Molecules In Vivo: Reaction Centers | 189
190
190
191
195
196
198 | Introduction: Possible Structural Role of Carotenoids in the Assembly 124 125 of Light-Harvesting Complexes ١. | | VII. Perspectives Acknowledgments References | 199
199
199 | |-----|--|--| | 11 | Electron Magnetic Resonance of Carotenoids Alexander Angerhofer | 203–222 | | | Summary I. Introduction II. Photosynthetic Systems III. Model Systems IV. Carotenoid Radicals References | 203
204
204
212
214
215 | | 12 | Carotenoid Radicals and the Interaction of Carotenoids with Active Oxygen Species Ruth Edge and T. George Truscott | 223–234 | | | Summary I. Introduction II. Electron Transfer Between Carotenoids and Carotenoid Radicals III. Interactions Involving Radicals of Carotenoids and Vitamins C and E IV. Interactions of Carotenoids with Free Radicals V. Reactions between Carotenoids and Singlet Oxygen Acknowledgments References | 223
224
225
226
228
231
232
232 | | 13 | Incorporation of Carotenoids into Reaction Center and Light-Harvesting Pigment-protein Complexes Harry A. Frank | 235–244 | | | Summary I. Introduction II. Reaction Centers III. Light-Harvesting Complexes Acknowledgments References | 235
236
237
240
242
242 | | Pai | rt IV: Ecophysiology and the Xanthophyll Cycle | | | 14 | Ecophysiology of the Xanthophyll Cycle Barbara Demmig-Adams, William W. Adams III, Volker Ebbert, and Barry A. Logan | 245–269
d | | | Summary I. Introduction II. Environmental Modulation of the Xanthophyll Cycle III. Associations Between (Z+A)-Dependent Dissipation, Photosynthesis, | 245
246
247 | | | and Foliar Antioxidant Levels | 263 | | | Acknowledgments
References | 266
266 | |-----------------------|--|---| | 15 | Regulation of the Structure and Function of the Light-Harvesting Complexes of Photosystem II by the Xanthophyll Cycle Peter Horton, Alexander V. Ruban and Andrew J. Young | 271–291 | | | Summary I. Introduction II. General Model for Non-Photochemical Quenching III. Unanswered Questions Concerning the Roles of the Xanthophyll Cycle in nonphotochemical Quenching IV. Mechanisms of the Xanthophyll Cycle in Controlling qE IV. Conclusions Acknowledgments References | 272
272
274
cle
275
280
287
288
288 | | 16 | Biochemistry and Molecular Biology of the Xanthophyll Cycle Harry Y. Yamamoto, Robert C. Bugos and A. David Hieber | 293–303 | | | Summary I. Introduction II. Biochemistry III. Molecular Biology Acknowledgments References | 293
294
294
297
300
300 | | 17 | Relationships Between Antioxidant Metabolism and Carotenoids in the Regulation of Photosynthesis Christine H. Foyer and Jeremy Harbinson | 305–325 | | | Summary I. Introduction II. Active Oxygen Species and Photosynthesis Acknowledgment References | 305
306
317
321
321 | | Part V: Model Systems | | | | 18 | Novel and Biomimetic Functions of Carotenoids
in Artificial Photosynthesis
Thomas A. Moore, Ana L. Moore and Devens Gust | 327–339 | | | Summary I. Introduction II. Carotenoid Photophysics IV. Carotenoids in Natural Photosynthesis V. Carotenoids in Biomimetic Systems | 327
328
328
329
330 | | | VII. The Evolution of Carotenoid Function in Photosynthesis VIII. Carotenoids in Artificial Photosynthesis IX. Conclusions Acknowledgments References | 334
335
337
337 | |------|---|---| | 19 | Physical Properties of Carotenoids in the Solid State Hideki Hashimoto | 341–361 | | | Summary I. Introduction II. Physical Properties of Carotenoids in Thin-Solid Films III. X-Ray Crystallography of Carotenoids IV. Optical Properties of all-trans-β-Carotene in the Condensed Phase V. Transient Optical Properties of all-trans-β-Carotene Single Crystals References | 342
342
342
349
352
357
360 | | 20 | Carotenoids in Membranes Wieslaw I. Gruszecki | 363–379 | | | Summary I. Are Carotenoids Present in Lipid Membranes? II. Localization of Carotenoids in Lipid Membranes III. Solubility of Carotenoids in Lipid Membranes IV. Effects of Carotenoids on Properties of Lipid Membranes V. Actions of Carotenoids in Natural Membranes Acknowledgments References | 363
364
367
369
374
377 | | Inda | av | 201 |